
•

•

•

•

•

REGRESSION ANALYSIS OF AN EXPONENTIAL RESPONSE WITH TYPE I CENSORING

Edsel A. Pen~ and Ann Inez N. Gironell~

1. Introduction

Life-testing experiments are usually conducted to determine the life
distribution of certain materials or components. The life distribution of
components is important because it gives us the re1iabil ity of the components,
that is, the probability that the componentw~ll survive a certain period of
time. In ordinary experiments, ,a sample of 'test units are subjected to
conditions in which they are intended to operate, and their failure times are
observed. After all of the test units have failed, the life distribution is
then estimated.

There are situations, however, in which failure of all the tests units takes
an exceedingly longer time than the period in which a decision is needed; or a
long experiment might be too costly. In these cases, there is a need to use a
different experimental design and an appropri ate method of estimation. For
example, an electronic company might want to know within three months the life
distribution of a transistor it produces. But the transistor mi!lht have a
lifetime beyond three months, and therefore if an experiment with ten
transistors is conducted, the company may need to wait for six months before all
the transistors fail.

An intuitive solution to this dilemma is to censor the experiment; that is,
terminate the experiment after a specified time and estimate the 1ife
distribution based on the test units that failed and did not fail. Of course,
there is a certain loss of information with this method, but the loss may be
offset by the gain in being able to make an early detision. In fact, as Epstein
and Sobel (1953) have shown, the best estimator of the parameter of the
exponential distribution ba~ed on r failures out of n test units had exactly the
same accuracy and precision as the best estimator based on r failures out of r
test units. This suggests that in order to compensate for the lost information,
we can simply test more units to obtain more failures. There are many
variations of censoring, and the scheme described above is customarily referred
to as Type I censoring.

Another t~chnique to obtain information in a shorter period is to acc~lerate

the failure of the units by subjecting them to higher stresses such as by
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increasing the temperature and -vol taqe , inference about the life distribution
under usual operating conditions is then made on the basis of the accelerated
failure times. Clearly. regression-type methods are needed to make such
inferences.

2. Problem and Assumptions

Consider an accelerated life testing experiment. Prior to the experiment. s

stress levels xl' .... Xs and censoring values cl• .... Cs are fixed on
the basis of experimental and practical constraints.

The whole experiment can be viewed as composed of s inaependent experiments ..
such that uniform conditions. except for the stress values. are maintained among
these s experiments. In the ith experiment. that are ni test units. if
before ·time ci all the ni units have failed. the ith experiment yields a
complete (all failed) sample; while if at time ci there are still unfailed
units. also called runouts. the ith experiment is terminated and yields a Type I
censored sample. Thus the data from the whole exper-Iment is composed of the

D

failure times V
1
, · j = 1.· ...• r .• i = 1•...• s, where r , denotes the number
J. 1 1

of failed units in the ith experiment. and the censoring times ci of the (ni-r i)
runouts, i=l ..... s. It should be noted that a vil .:. ... .:. Vi':' ci' •
The problem is to develop the Ml estimators of 60 and 61 in the model

e i = E(V I Xi) = 60 + 61 Xi > a (2.1)

and obtain their asymptotic variance-covariance matrix. In model (2.1). e i
is the p~rameter of the exponential distribution which is the assumed
distribution':"rif ,the lifetimes of the test units in the ith experiment.

3. The Exponential Distribution and Type I Censoring

A random variable X is said to have an exponential distribution with para
meter e if its density function is given by

f{x) = (l/e)exp{-x/e) I{O."') (x}, s > a
or if its distribution function is given by

F(x) = 1 - exp{-x/~) I{O. "') (x}, e > a

(3.1 )

(3.2)

•

It is well-known that the mean and variance of X are e and e2• respectively.
The exponential distribution is a very important distribution in reliability

theory. and it has been found to model the life distribution of electronic and
mechani cal components quite sat i sfactorfly (Davi s, 1952). Such components are
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characterized by the somewhat surprising property of "old as good as new", that

is, an old component is as good as new component stochastically. Stated in

another way, the probability of the component surviving x units of time given
that it has survived t units of time is equal to the probability of surviving x

units of time given that it is a new item. Symbolically, if X denotes the life
of the component, then P(X > x I X > t) =' P(X > x), which is just the. . .
"memoryless" property of the exponential distribution. It is well-known that

the exponential distribution is. the only distribution which possesses such

property. Another characterization is that it has a constant failure rate

(Barlow and Proschan, 1981).

Definition. A random variable X is said to be distributed as a truncated
exponential with truncation c > 0 and parameter e if its density function is
given by

1 exp(- ~ )

1- exp(!cle) I(O,c)(x),e> 0

;~~~ I(O,c)(x)

.. or if its distribution function is given by

FT(x) = ffit-I(O,C) (x) + I(c, co) (x)

If X has pdf (3.3) or df (3.4) then it has mean

E(X) = e - c r(c)/F(c) where ftc) = 1 - F(c)

and variance

Vex) = e2 - c2 F(c)/F2(c)

(3.3)

(3.4)

(3.5)

(3.6)

Let Xl' .•• , Xn be a random sample from the exponential distribution.

• Denote by Yl' Y2.... , Yn the order statistics of Xl .... ' Xn. Then the
joint_~ensity of Yl •..•• Y2 is given by:

•

lIn
fy . y(Y1' .. ··yn)=n!(-)exp(e r .y j ) .

·1.... ,n e i=I'

o c Yl oS.... ~ Yn < co

We also have the following results.

Theorem 1. The random variable R denoting the number of Xi'

than or equal to c >q has probability mass function

39
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•
fR('") = nCr.fF{c)Jr [F{c)Jn- r• r = 0.1 •..•• n

Proof: For allY t , i = 1••••• n, P{Xi ~ c) = F{c). Since the Xi'S are

independent. then fR{r) = P{R=r) = P{exactly r Xi's ~ c) = (~ Lr(clYLf"(crf!-r•.
Q.E.D.

•(3.9)

(3.8)

(3.10)

binomial with parameters nand probabil ity of success F{c). it

The r.v. R has expected value

E{R) =n F{c)

V{R) = n F{c) P':l
Theorem 2. The joint density of Yl •...• Yn given R = r is

( I ) 1 '( l)n ( '1 n )
f y y Y1'" .• Yn r =-fr.:Ir n. -8 exp - -8 . L .Y,' •

1· .. ·' n/2 'pIli 1=1'

for 0 < y 1 .5. .•• .5. yr .5. c < .Yr+1 .5. ••• .5. Vn < "", and r = 0, 1, , .. , n.

Proof: The joint density of Yl, ... , Yn given R = r is equivalent to

the joint density of Yl, ... , Yn conditional on the event Yl ~ •.. 5

Yr .s c < Yr+l .s ... .s Yn. The probability of the conditioning event is

given by (3.71, hence the theorem follows from the definitions of the •

conditional density function, Q.E.D.
, The following lemma is a useful result and can be established by mathematical

induction.

Lema: Given real numbers 0 < a ~ b < co then

and variance

Since R is

follows that:

Corollary:

.b b .b b n
I(a, b, n) fij f y ." Iy f y exp {- .L .Yj} dyn,·· d

Y11 . n-2 . n-1 .)=1

(_l)n ~~ {exp (-b) - exp(-l)-I-n

for any positive integer n.

(3.11)

•
Theorem 3. The joint density of Yl , ... , YR given R=r is

(3.12)

where

and

r
S = L y. + (n-r)c

j=l J

_ n;
Pr - 1"iHlT

•
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Proof:

•

fy y (Y1"'" Yr/r) = /c' /y'
1'"'' R/R r+l

dYn'" dY r+1

1 ,lr 1 r
~ n. (-a) exp (- a .I: y

J.)
x

'R\rl J=l

.. .. .. 1 n-r 1 n
I c I y ., ./y (a) exp (- e . I: y) dYn'" dYr+1

r+1 n-1 J=r+1

1 ,lr 1 r c b
f1""=T

R
r n. (-) exp (- - I: y.) x b'1mcc I(a ' a' n-r )

'n\ r I a a j=l J ~

1 ,(l)r (1 r ) 1 -l.!cili-
f1""=Tr n: - exp - - I: y. x r.:-::TTn- r .' [- a .-./
'R\II a a j=l J \II- r / ·

1 n ~ 1 r
~ rn:rY (e) exp-

r
I: y. + (n-r )c

j=l J

a

Corollary 2. The order statistics Y1 , ... Yr given that R = r are the

• order stati stics of a samp1 e of si ze r from the truncated exponenti a1 di stri bu

di stri bution. Consequently,

•

r r
I: y. = I: X'

j=l J j=l J'

Proof From (3.12), we obtain

f Y (Y1"'" Yr/r)Y1' ... , R/R

1 r 1 r
r : (-) exp (- - I: Y.

a a j= 1 J

[F( c)-./-r

I 1 r r
~ (a) exp - I: y. + (n-r)c
(n-r i : j=l J

~-=---a---

•

r
= r: I: fT(Yi), 0 < Y1 :. ... :'Yr:' c

i =1

Therefore the conditional joint density of Y1, .•. , Y
r

given R = r is equal to the

joint density of the order statistics of size r from the truncated exponential

distribution. Clearly, ~ Y. ~ X. Q.E.D.
j=l J j=l J

41



r
From an experimental point of view. S = I: Yj + (n-r)c

j=l

is the total time on test of n test units at the time of censoring.

Theorem 4. The joint density function of Yl •••.• YR. R is

fY1' ...• YR • R (Yl ..... Yr. r) = nPr (t )r exp(- t )
for r = O. 1..... n; 0 < Yl ~ ... ~ Yr ~ c.

Proof: Since fy Y (Y1.·... y .r) = fR(r)fy ' Y ( )
1····· R.R r 1·· .. • RIR y1·· .. 'Yr/r .

The theorem follows from theorems 1 and 3. Q.E.D.

R
By the factorization theorem. the statistic S = I: Yj + (n-R)c is not a

j=l
sufficient statistic for e. but (S. R) is jointly sufficient for a.

•

•

R
Theorem 5. The statistic S = I: Yj ~ (n-R)c has expected value

j=l

E(S) = en F(c) = eE(R)

and

V(S) = en F(c) {e (l+F(c) - 2cr~~~ }
Proof: First note that

R
E(S!R) = E (1: YjlR) + (n-R)c

j=l

By corollary 2. it follows that

R R R
E( I: Yj/R) = E( I: YjIR) = I: E(XjIR)

j=l j=l '= j=l

R
I: I e - cF(c) } = R { e - c £..W.. } .

j=l F(t) F(c)

(3.14)

(3.15)
•

•

Therefore. E(sIR) = R(e - cF(c ) +
F(c)

Since E(S) = E/E(sIR) 7 then
E(S) = n~ + (a-- Ffc) E{R)

(n-R)c = R (a - __S__) + nc
F(c)
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•
= nc + ( a - 2..) nF(c )

F(c)

=anF(c) = a E(R)

For the variance. recall that

VIS) = E(v(SIR» + V(E(SIR».

We have V(E(SIR» = (a- c )2 VCR) = (a - ~)2 nF(c) F(C>
. 'F1C) F(c)

R
= 1: V(Xj/R)

j=l
•

•

On the other hand.

R R
V(S/R) = V( 1: Yj/R) = V( 1: Xj/R)

j =1 j =1

= R (a 2 - c2 iCc) )
FZ(c)

Therefore. E(VCSIR) = la 2 - c2 ~~c) InF(c)
F (c)

hence

VIS) = nF(c) {a2 - c2 .F~C) + (a - F(C)2 iCc)}
. F (c) .

- F(c)
= nF(c) {a2 (l + F(c) - 2 c F'(CT}

-
= a nF(c) {a2 (l + i(c> - 2c ~f~~ }

4. The Ml Estimators

The likelihood function of the sample described in Section 2 is

s
l = l( 13 O. 13 1) = :rr l i

1=1
where If' i = 1•..•• s is the likelihood function of the ith sample. By

• theorem 4. the 10g- likelihood function

s s s S;
R. = 1: log (ni Pr-) - 1: ri log a i - 1:

i =1 1 i =1 1=1 a;
(4.1 )

where Si
r

= 1: Yi j + (ni - ri) cj , and
j=l

•
The Ml estimators of 130' and 13 1, denoted by bO and b1•

respectively. are values of 13 0 and 131 maximizing (4.1) and satisfying 130

+ B1Xi > 0 for i = 1••••• s , The first order partfal s of (4.1) are
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•aR.
s r i s Si

R.O = aeo - 1: + 1: 7i=1 8i i=1
1

(4.2)
aR.

s ri\ s Sixi
R. = 1: + 1:1 a8l i=1 8i i=1

~2

8i

Both R. O and R,1 are nonlinear functions of 80 and 81' hence it is
practically impossible to obtain close forms of the ML estimators. Estimates
are therefore obtained iteratively.

Us ing the Newton-Raphson procedure, which is based on first-order Taylor •
approximations of R,O and R,l' the ML estimates are obtained by solving.
iteratively the simultaneous equations below in bo(k+l) and b1(k+l) and
where bo (k+l) and bl (k+l) are the (k+l )th iterates. The equations are

A (k) b (k+l) + A(k) b(k+l) = S(k)
11 0 12 1 1

A(k) s r. s Si •where 1: 1 2 1:11 i=1 (k) 8~ i=1 (k)8~

2 2
A(k) s rix i s S.x.

1: 2 1, 1

{k~
-

i=1 (k)8~12 i=1

2
A(k) s rix i s Sixi

1: - 2 1:22 i=1 (k);f i=1 (k) 8~

S(k) s r. s Si
1: 1

1:1 i=1 (k)8i i=1 (k) 8~ . •
s(k) s rix i s Sixi

1: 1:2 i=1 (k)8i i=1 (k)8~

and (k) = b(k) + b~k)xi
~i 0

•
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• When using this method, provision must be made to ensure that the initial

iterates (baD), bt D)), which the user should supply, is linear" the solution

(bO' bl). Furthermore, at each iteration, the iterates must satisfy
bJk) + ~k)x; > 0 for i = 1, .•. , s. The authors believe that this

algorithm is not effective when the true values of B0 and Blare rather
small, say in the range from 0 to 10. Indeed, this method is theoretically

inefficient because 'so much information has been lost by using a linear

approximation to the nonlinear functions lO and ll'
A second-order method can be employed and an a19orfthm for thi s method is

described below:• T TLet ~ = (bO" b1), .9.(~) = (.e.o(~), R) s»
/; and !:!.C~) = [loolbi lOl(b lJ be the vector of iterates,

lOO(b) ill (b)

the gradient vector, and the Hessian matrix, respecti vely. The second order

partials are:

loa
II S r; S s .

r -2 r l.

• ag- i=1 7 i=l ~1 l.

,ll 5 r; Xi S s.x.
l07 r -2 I. l. l.

~ i=l 7 ;=1 7" (4.4)
1 l.

a21 s 2
s.x~r;x i s

177 r -2 r l. l.---;r i=l 7 i=l 7"1 1 l.

A superscript of T and -1 will denote matrix transpose and inverse, respectively.
Let ~(k) be the vector of iterates after the kth iteration, To

determine ~(k+l), a direction vector is first obtained as follows:•
where

g1 sign /-= {g(b(k))}T {.!!(~(k?)}-I {g(~(k))}J,

g2 " sign 1f.,g(£.(k))} ~*J,

e* + max C\, 0) ~I'

Al largest eigenvalue of .!!(£.(k)), and

~I " eigenvector associated with AI'

•
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Then b(k+l)' is obtained by maximizing thelog-likelitiood function in (4.1)

in the di~ection of !!.(k), that is. ~(k+l) = ~(k) +!..* !!.(k)

where T* e T = {r : max (~(k) + !!.(k)l. 0 < a < '" }

The Fibonacci Search Algorithm is used to obtain T*. This algori,thm is a

variant of the Modified Newton Procedure and the Second-Order Optimum Tech~ique

(see Zangwill (1969)).

By theorem 5. E( .1'0) = E(f1) = 0, and E( POO) , E /01) and E( £'11)

exi st and are nonzero. Therefore" for 1arge samples (see Kendall and Stuart,

1961), the ML estimators (bO' bl) is distributed as bivariate normal with •

mean (a o ' al ) and asymptotic varia~ces and covariance given by:

s
xl / a~Var(bo) = 11-1 r ni Fi (Ci )

f=l

s 2
Var(bl) 11-1 r ni Fi (Cf) / ai (4.5)

f =1

s >& 2Cov'( bO, bj ) = - 11-1 r ni Fi (Cf) i / ai
i =1 •

ai = aO + al Xi

and Fi(Cf) = 1 - exp( - Cf/afl.

In order to obtain estimates of the asymptotic variances and covariances, •

6i =bO + blx i is substitut,ed in (4.5 ) for ai•

Numerical Example. Table 4.1 contains the resulting data from a computer

simulated experiment, the experiment being of the type described in Section 2.

The model is that at each stress level Xi' the response variable is

exponentially distributed with mean ai =2 - Xi ;

This data was analyzed using the ML method devel oped in the preceding

section, and a summary of the iterations is presented in Table 4.2. The initial

iterates were b(O) = 2.0 and b(JO) = -1.0, the true values of the model,
o .

•
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It is interesting to note that the Ml estimates are quite far from the true

values of the model of 2.00 and -1.00. However, this was one of those samples

in the simulation experiment which gave estimates which were far from the true

1J values. A true example of how randomness can disappoint us:

5. Results and Discussion

Due to the difficul ty of obtai n1 ng a closed form of the Ml estimators, a

computer simulation experiment, was conducted to compare the Ml estimators and

the IlS esti1nators (see Scheme and Hohn (1979) for discussion of IlS

estimators), over varying sample factors.

The assumptions of the simulation experiment were identical to those set

forth in Section 2. The parameters BO and Bl have values 2.00 and -1.00,

respectively. Testing was conducted uniformly over the stress interval la, 17,

•
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that is. ranging from the minimum stress of Xl = 0 (with 81 = 2) to the
maximum stress of Xs = 1 (with 8s = 1).

The sample factors considered in the experiment- were the following:
1. The censoring probability at the minimum stress level. This determined

the censoring time at each stress level. since it was assumed that the censoring
times were identical. For a given p. the censoring time is c = -2 log p.

2. The number of stress level s. This include the minimum and maximum

stresses of Xl = 0 and Xs = 1. The stress levels were equally spaced over
the stress interval LO. 17·

s •
3. The overall sample size n = L ni. where ni is the number of units

i =1
on the ith stress l~vel.

Due to limi ted resources. the sinwlati on was conducted on only 3
combinations of the factors. These combinations are enumerated in Table 5.1

Table 5.2 presents a summary of the features of the simulation experiment.
The number of samples analyzed in each of the combinations vary due to the
setting of upper limits for the number of iterations and computer running time.
Under the heading "Successfully analyzed" are the number of samples in which
estimates -were obtai ned. In both the ML and ILS methoas. there were inherently
unanalyzable samples. which are samples which have at most one uncensored
value. Notice that combination 2 has the -highest rate of unanalyzable samples
(43~). This is so because the censoring probability was 0.75 hence more values
were censored. As ide from these unana1yzab1e sampl es , there were others where
the ML method did not produce estimates. These are the ones in which the ML
method did not converge. and the; r numbers can be found under the heading
"nonconvergent". The column "all uncensored" represents the number of samples
where all the values are uncensored. '0

The estimates of the parameters of the sampling uncensored (s.d.'s) of the

estimators of 130 are presented in Table 5.3. It should be pointed out at this

48
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stage that all the numbers in Tables 5.3 - 5.6 are just estimates of the
parameters of the sampling distributions, hence are subject to random variation
themselves. The root~an-square error is just the square root of the
mean-squere-error, Under the heading "quantiles", ql and q3 denotes the
estimates of the 0.25th and 0.75th quantfles of the s.d. 's of estimators of a

l
'

Table 5.2 Summary of Features of the Simulation Experiment

, Combination p
Factors

s nf n
Samples
Analyzed

Successfully Analyzed
ML ILS

1
2
3

0.50 5
0.75 5
0.50 20

each
each
each

5
5

20

130
2no
1 JO

99
105
167

118
114
180

Table 5.2 continued

Mean No. of Uncensored Values
All Samples Convergent Only

..
Unanalyzable
Samp1esa

12
86
o

NOnconvergentb
(for ML)

9
9

13

All
UncensoredC

10
o
o

2.98
1.66

12.41

3.15
2.43

12.52

aSamp1es which· has at most one uncensored value.
bConvergence not achieved at the upper lfmit of number of iterations
cNo censored values (complete sample).

Table 5.3 Statistics of Estfmators of BO ( BO c 2.00)

coiribina- Standard OUantiles
tion Method Mean{t-va1ue)a Deviation ""SE Min q1 Med q3 Max

• ML 2.55{2.15**) 2.58 2.64 0.08 0.68 1.67 3.21 10.20
ILS 1. 31( -11. 2***) 0.67 0.96 -0.08 0.78 1.27 1.82 3.15

2 ML 1.52{ -3.58**) 1.36 1.44 0.01 0.39 1.09 2.92 4.64
ILS 0.69{48***) 0.29 1.36 0.05 0.49 0.73 0.91 1. 22

3 ML 2.10(1.23) 1.09 1.09 0.17 1.43 1.92 2.63 4.75
ILS 1. 30{ -2. 65***) 0.35 0.78 0.49 1.09 1. 29 1.49 2.43

at-values with (*) are significant at c 0.10
t-values wfth (**) are 'signiff_~at c 0.05
t-values with (***) are sign1£1 nt at c 0.01

•
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Tables 5-.4.1-5.4.3 presents the estimators of the parameter of the s.d, 's

but clas~ified according to the number of censored values in the samples.
The remaining tables and figure presents a similar information ·as the

preceding ones except that they pertain to the estimators of al.
The conclusions which can be deduced from the results of the simulation

experiment are limited to the assumptions of the experiment, in particuhr,
that 80 = 2.0 and 11 = -1.0. In essence, this is one of the limitations
of the experiment, and an extensive comparison of the ML and ILS estimators
requires further stuQy.

Examining Table 5.3, there can be no doubt that the ILS estimator of aO •
is negatively biased. The tests of significance, although not ver,y appropriate
under the ct rcumstances because of an observed assymmetr,y of the sampling dis
tributions. showed highly significant results. Furthermore. the true values of
80 is not contained in the interquantile ranges for all the three combinations.

Table 5.4.1 Statistics of Estimators of 80(80 = 2.0) Classified
According to the Number of Censored Values for Combination 1

AUiriber of Number of
Censored Method Samples Mean

Standard Minimum Maximum
Deviation Value Value •

o

2

3

ML 8 0.80 0.37 0.26 1.36
ILS 10 0.73 0.25 0.22 1.22

ML 26 1.03 0.57 0.13 2.25
ILS 33 0.86 0.44 -0.08 1.55

ML 38 2.29 1.28 0.18 4.31
ILS 46 1.43 0.50 0.39 2.34

ML 27 4.91 3.64 0.36 10.20
ILS 29 1.84 0.74 0.05 3.15

Table 5.4.2 Statistics of Estimates of·80(80 = 2.0) Classified •According to the Number of Censored Values for Combination 2

Nuiilber of Nuiilber of Standard Minimum Maximum
Censored Method Samples Mean Deviation Value Value

ML 10 0.52 0.36 0.06 -1.23
ILS 10 0.40 0.21 0.11 1.78

2 ML 25 0.81 ~~0.52 0.01 1.65
ILS 29 0.61 ~(0.23 0.20 1.90

3 ML 7& i.92 1.48 0.01 9.64
ILS 75 0.75 0.30 0.05 1.22 •
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• Table 5.4.3 Statistfcs of Estimates of 60(80 a 2.0) Classified
According to the Number of Censored Values for Combination 3

Number of Number of Standard Minimum Maximum
Censored Method Samples Mean Devfatfon Value Value

4 ML 10 1.05 0.33 0.50 1.65
ILS 10 0.93 0.28 0.57 1.50

5 ML 15 1.53 0.42 0.74 2.00
ILS 15 1.12 0.22 0.67 1.41

6 ML 28 1.55 0.90 0.77 3.18
ILS 30 1.08 1.22 0.72 1. 53• 7 ML 30 1.89 0.66 0.29 3.13
ILS 30 1.26 0.29 0.69 1. 91

8 ML 33 2.19 0.77 0.17 3.23
ILS 38 1.38 0.29 0.64 1.95

9 ML 19 2.26 0.93 0.75 3.91
ILS 20 1.32 0.26 0.79 1.86

10 ML 17 3.03 1.02 1.63 4.59
ILS 18 1. 56 0.27 1.16 2.13

• 11 ML 5 3.56 1.17 1.91 4.75
ILS 7 1.69 0.22 1.30 2.01

On the other hand. the ML estimator of Be f s btased for combi natf ons 1
and 2. In combination 3. however. there fs no reason to conclude that it is
biased. In fact. the mean values is 2.10 with standard error of 0.08. By
inspection of Table 5.2. we notice that combination 3 has no unanalyzable
samples. while the other two have. It seems logical to attribute the
significant boas of combination 2 to the 86 unanalyzable samples. because these
are the samples which had large values. and hence were supposed to yield higher

., estimates.
Looking at Table 5.4.1. we notice that the cause of t~ positive bias for

combination 1 were the large estimates obtained from samples with 3 censored
values. This leads to the conjecture that the ML estimator gives large
estimates when there are many censored values. But in Table 5.4.2. the ma~imum

value of the estimates obtained from highly censored samples. is only .4.64. and
in Table 5.4.3. there are not many large estimates: It therefore seems that the
sampling distribution of the ML estimator of lb is positively skewed. making
the probability of large values smal~,! but still possible. Note also that the
true value of 60 is co~tained in the interquantile ranges of the ML estimator.
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Examining the root-mean-square error (RMSE's) of the ML and TLS estimators •

of 60, we notice that the RMSE of the ILS estimator is smaller than the RMSE

of the ML estimator in all three combinations. The reason is' that the ILS

estimator has very small variance relative to that of the ML estimator. This

precludes the immediate conclusion that the ML estimator is preferable over the

ILS estimator.

Inspecting Table 5.5, we notice that the ILS est imtor of 6 1 is

positively biased for all three combinations. On the other hand, the ML

estimator is unbiased for combinations 1 and 3, and positively biased for

combination 2. Again, we explain this as due to the unanalyzable samples. It

is worthwhile noting that for 60 we had negative bias while for 61 we lIad . ,

positive bias. This is so because the estimators of 60 amI 61 are always

negatively correlated.

Table 5.5.1 Statistics of Estimate of 61 (61 = -1.0)

Combina- Standard
tion Method Mean(t-va1ue)a Oeviation RMSE Min

Ouantiles
q1 Med q3 Max

ML -0.98(0.06) 3.78 3.78 -9.81 -2.63 -0.75 0.99 8.79
ILS -0.38(6.14***) 1.09 1.25 -2.70 -1.10 -0.50 0.36 2.92

2 ML -0.34(2.81***) 2.39 2.48 -4.41 -2.42 -0.49 -0.89 4.65 ,
ILS -0. 19(15. 5***) 0.56 0.99 -1.17 -0.65 -0.30 0.21 1.60

3 ML -1.03(-0.25) 1.46 1.46-6.52 -1.81 -1.01 -0.15 2.84
ILS -0.46(13.1 ***) 0.55 0.78 1.98 0.77 0.48 0.16 0.79

at-values with (*1 are significant at = 0.10
t-va1ues with (**) are significant at = 0.05
t-values with (***) are significant at = 0.01

Table 5.5.2 Statistics of Estimates of 6 1(61 =1.0) Classified
According to the Number of Censored Values for Combination 1

Number of Number of
Censored Method Samples Mean

Standard Mi nimum Maximum
Deviation Value Value •

o

2

3

ML 8 -0.52 0.51 -1.42 0.11
ILS 10 -0.39 0.48 -0.97 0.52

ML 26 -0.17 1.01 -1.741 1.47
ILS 33 -0.17 0.81 -1.54 1.15

ML 38 -0.92 2.46 -4.11 3.55
ILS 46 -0.55 .1.08 -2.44 1.73

ML 27 -1.98 " 6.51 -9.81 8.79
ILS 29 -0.37 1.48 -2.70 2.92
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On the basis of these observations, we can conclude that the ML estimators •

tend to be unbiased when there are not, any unanalyzable samples, while the ILS
estimators are biased. However, the ML estimators are very variant relative to
the ILS estimators, making its RMSE greater than the RMSE of the ILS estimators.

The question is which is preferable between the two methods? As was pointed
out in the beginning of this subsection, we can only make conclusions with
respect to the given parameter values of aO = 2.0 and al = -1.0: In order
to make a general choice, it would entail examination of the performances of the

estimators for other parameter values. In particular, if we change the values
-I

of ao and a1, does it increase the bias of the ILS estimators, or decrease
the variance of the M,L estimators? What happens to their RMSE's at different
values of f1> and ~? This we cannot answer at this stage. Going back to
the partiCular case of aO = 2.00 and a1 = -1.00, there is reason to

prefer the ML estimator over the ILS .estimator ~ecause of its unbiasedness. In
the context of accel erated 1He tests, we woul d prefer unbiased est tmators so
that we could also unbiasedly estimate the parameter values at the usual
operating conditions, which are estimated by extrapolation. Another reason for
preferring the ML estimators is that we do not ,really know the magni tude of the
bias of the ILS estimator. That bias might depend on e, n, s , and p, If we
know the magnitude of bias, then the tLS would be preferable because then we can

just correct for the bias.
Thus, it is not advisab1e to use the methods developed for the normal case

because it might lead to very biased results. Even for large samples
(combination 3), the ILS estimators are biased, hence it seems that it would
also hold true in the asymptotic sense.
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